A Distributed Stochastic Gradient Tracking Method
نویسندگان
چکیده
In this paper, we study the problem of distributed multi-agent optimization over a network, where each agent possesses a local cost function that is smooth and strongly convex. The global objective is to find a common solution that minimizes the average of all cost functions. Assuming agents only have access to unbiased estimates of the gradients of their local cost functions, we consider a distributed stochastic gradient tracking method. We show that, in expectation, the iterates generated by each agent are attracted to a neighborhood of the optimal solution, where they accumulate exponentially fast (under a constant step size choice). More importantly, the limiting (expected) error bounds on the distance of the iterates from the optimal solution decrease with the network size, which is a comparable performance to a centralized stochastic gradient algorithm. Numerical examples further demonstrate the effectiveness of the method.
منابع مشابه
Visual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot
The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...
متن کاملTrading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent
We present and study a distributed optimization algorithm by employing a stochastic dual coordinate ascent method. Stochastic dual coordinate ascent methods enjoy strong theoretical guarantees and often have better performances than stochastic gradient descent methods in optimizing regularized loss minimization problems. It still lacks of efforts in studying them in a distributed framework. We ...
متن کاملDistributed gradient for multi-robot motion planning
Distributed stochastic search is proposed for cooperative behavior in multi-robot systems. Distributed gradient is examined. This method consists of multiple stochastic search algorithms that start from different points in the solutions space and interact to each other while moving towards the goal position. Distributed gradient is shown to be efficient when the motion of the robots towards the...
متن کاملSPSA-Based Tracking Method for Single-Channel-Receiver Array
A novel tracking method in the phased antenna array with a single-channel receiver for the moving signal source is presented in this paper. And the problems of the direction-of-arrival track and beamforming in the array system are converted to the power maximization of received signal in the free-interference conditions, which is different from the existing algorithms that maximize the signal t...
متن کاملGlobal Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems
The Burer-Monteiro [1] decomposition (X = Y Y T ) with stochastic gradient descent is commonly employed to speed up and scale up matrix problems including matrix completion, subspace tracking, and SDP relaxation. Although it is widely used in practice, there exist no known global convergence results for this method. In this paper, we prove that, under broad sampling conditions, a first-order ra...
متن کامل